分部积分公式 常规内容-分部积分公式的推导
所有的微积分公式∫x^αdx=x^(α+1)/(α+1)+C ∫1/x dx=ln|x|+C ∫a^x dx=a^x/lna+C ∫cosx dx=sinx+C ∫sinx dx=-cosx+C ∫(secx)^2 dx=tanx+C ∫(cscx)^2 dx=-cotx+C ∫secxtanx dx=secx+C ∫cscxcotx dx=-cscx+C
积分公式你是要不定积分的基本公式吗?
1)∫kdx=kx+c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4) ∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(a^2-x^2)dx=arcsin(x/a)+c
11)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c
14) ∫sec^2 x dx=tanx+c;
15) ∫shx dx=chx+c;
16) ∫chx dx=shx+c;
17) ∫thx dx=ln(chx)+c;
18)∫k dx=kx+c
19) ∫1/(1+x^2) dx=arctanx+c
20) ∫1/√(1-x^2) dx=arcsinx+c
21) ∫tanx dx=-In|cosx|+c
22) ∫cotx dx=In|sinx|+c
23) ∫secx dx=In|secx+tanx|+c
24) ∫cscx dx=In|cscx-cotx|+c
25) ∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c
26) ∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+c
三角函数积分公式大全 三角函数最简单的概念是什么?显然,就是sin、cos、tg、ctg
这四个概念。这是三角函数的基本元素。可惜有很多人学了很长时间的三角函数,这四个符号倒是认识了,却没有能够真正理解它们的内涵。所谓三角函数,简单来说,就是直角三角形的几条边的比例关系。假设有直角△
abc,∠
c=90°,对应斜边c,∠
a
和∠
b
分别对应直角边a
和b。
?那么,sina=a/c,
cosa=b/c,
tga=a/b,
ctga=b/a。实际上,这四个函数就是为了把直角三角形的比例线段简单化,为了避免每次都要写一大堆线段的比例式,而发明出来的。sina
就代表∠a
所对的直角边与斜边的比例,cosa
就代表∠
a
的邻边与斜边的比例,tga
就代表∠
a
的对边与邻边的比例,ctga
就代表∠a
的邻边与对边的比例。
把这些最简单的概念弄清楚了,有很多基础的三角函数公式就不用记了
这是我在我空间里复制的一段
我就是看了这个才明白的
希望能帮到你